Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 4629, 2024 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472312

RESUMO

Biosurfactants encompass structurally and chemically diverse molecules with surface active properties, and a broad industrial deployment, including pharmaceuticals. The interest is growing mainly for the low toxicity, biodegradability, and production from renewable sources. In this work, the optimized biosurfactant production by Pseudomonas aeruginosa BM02, isolated from the soil of a mining area in the Brazilian Amazon region was assessed, in addition to its antiviral, antitumor, and antimicrobial activities. The optimal conditions for biosurfactant production were determined using a factorial design, which showed the best yield (2.28 mg/mL) at 25 °C, pH 5, and 1% glycerol. The biosurfactant obtained was characterized as a mixture of rhamnolipids with virucidal properties against Herpes Simplex Virus, Coronavirus, and Respiratory Syncytial Virus, in addition to antimicrobial properties against Gram-positive bacteria (Staphylococcus aureus and Enterococcus faecium), at 50 µg/mL. The antitumor activity of BS (12.5 µg/mL) was also demonstrated, with potential selectivity in reducing the proliferation of breast tumor cells, after 1 min of exposure. These results demonstrate the importance of studying the interconnection between cultivation conditions and properties of industrially important compounds, such as rhamnolipid-type biosurfactant from P. aeruginosa BM02, a promising and sustainable alternative in the development of new antiviral, antitumor, and antimicrobial prototypes.


Assuntos
Pseudomonas aeruginosa , Tensoativos , Tensoativos/química , Glicolipídeos/química , Antivirais
2.
J Biomol Struct Dyn ; 41(16): 7686-7699, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36124832

RESUMO

The coronavirus disease-2019 (COVID-19) pandemic, caused by the novel coronavirus severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2), became the highest public health crisis nowadays. Although the use of approved vaccines for emergency immunization and the reuse of FDA-approved drugs remains at the forefront, the search for new, more selective, and potent drug candidates from synthetic compounds is also a viable alternative to combat this viral disease. In this context, the present study employed a computational virtual screening approach based on molecular docking and molecular dynamics (MD) simulation to identify possible inhibitors for SARS-CoV-2 Mpro (main protease), an important molecular target required for the maturation of the various polyproteins involved in viral replication. The virtual screening approach selected four potential inhibitors against SARS-CoV-2 Mpro. In addition, MD simulation studies revealed changes in the positions of the ligands during the simulations compared to the complex obtained in the molecular docking studies, showing the benzoylguanidines LMed-110 and LMed-136 have a higher affinity for the active site compared to the other structures that tended to leave the active site. Besides, there was a better understanding of the formation and stability of the existing H-bonds in the formed complexes and the energetic contributions to the stability of the target-ligand molecular complexes. Finally, the in silico prediction of the ADME profile suggested that LMed-136 has drug-like characteristics and good pharmacokinetic properties. Therefore, from the present study, it can be suggested that these structures can inhibit SARS-CoV-2 Mpro. Nevertheless, further studies are needed in vitro assays to investigate the antiviral properties of these structures against SARS-CoV-2.

3.
J Biomol Struct Dyn ; 41(18): 8978-8991, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36326347

RESUMO

COVID-19, a disease caused by SARS-CoV-2, was declared a pandemic in 2020 and created a global crisis in health systems, with more than 545 million confirmed cases and 6.33 million deaths. In this sense, this work aims to identify possible inhibitors of the SARS-CoV-2 RdRp enzyme using in silico approaches. RdRp is a crucial enzyme in the replication and assembly cycle of new viral particles and a critical pharmacological target in the treatment of COVID-19. We performed a virtual screening based on molecular docking from our in-house chemical library, which contains a diversity of 313 structures from different chemical classes. Nine compounds were selected since they showed important interactions with the active site from RdRp. Next, the ADME-Tox in silico predictions served as a filter and selected the three most promising compounds: a coumarin LMed-052, a hydantoin LMed-087, and a guanidine LMed-250. Molecular dynamics simulations revealed details such as changes in the positions of ligands and catalytic residues during the simulations compared to the complex from molecular docking studies. Binding free energy analysis was performed using the MMGBSA method, demonstrating that LMed-052 and LMed-087 have better affinities for the RdRp by energetic contributions to the stability of the complexes when compared to LMed-250. Furthermore, LMed-052 showed significant in vitro inhibition against MHV-3, decreasing 99% of viral titers. Finally, these findings are useful to guide structural modifications aiming to improve the potential of these compounds to act as inhibitors of SARS-CoV-2.Communicated by Ramaswamy H. Sarma.

4.
Biomacromolecules ; 23(10): 4041-4052, 2022 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-36173245

RESUMO

Herpes simplex virus type 1 (HSV-1) is a persistent human pathogen, and the emergence of strains resistant to Acyclovir (ACV, reference drug) shows the urgency to develop new treatments. We report the antiherpetic mechanism of the action of lasiodiplodan (LAS-N, (1 → 6)-ß-d-glucan) and its sulfonated derivative (LAS-S3) in vitro and in vivo. LAS-S3 showed anti-HSV-1 action with high selectivity indices for HSV-1 KOS (88.1) and AR (189.2), sensitive and resistant to ACV, respectively. LAS-S3 inhibited >80% of HSV-1 infection in different treatment protocols (virucidal, adsorption inhibition, and post-adsorption effects), even at low doses, and showed a preventive effect and DNA and protein synthesis inhibition. The antiherpetic effect was confirmed in vivo by the cosmetic LAS-S3-CRÈME decreasing cutaneous lesions of HSV-1, including the AR strain. LAS-S3 possessed a broad-spectrum mechanism of action acting in the early and post-adsorption stages of HSV-1 infection, and LAS-S3-CRÈME is a potential antiherpetic candidate for patients infected by HSV-1-resistant strains.


Assuntos
Herpes Simples , Herpesvirus Humano 1 , Aciclovir/farmacologia , Aciclovir/uso terapêutico , Antivirais/farmacologia , Glucanos/farmacologia , Herpes Simples/tratamento farmacológico , Humanos
6.
Eur J Med Chem ; 238: 114488, 2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35665691

RESUMO

The Anaplastic Lymphoma Kinase (ALK) is a therapeutic target for personalized medicine in selected cancers. Despite excellent clinical responses to ALK inhibitors, most patients develop drug resistance and relapse. New compounds with alternative binding modes are needed to overcome resistant mutants. Here we describe a medicinal chemistry effort to the design and development of novel ALK inhibitors based on a 4,6-substituted α-carboline scaffold. Active compounds were able to inhibit the gatekeeper L1196M mutant, in several cases better than the wild-type enzyme. Compound 43 showed potent non-ATP-competitive inhibition of wild-type and mutant ALK, including G1202R, in biochemical and cellular assays, as well as in xenograft mouse models.


Assuntos
Carbolinas , Receptores Proteína Tirosina Quinases , Quinase do Linfoma Anaplásico , Animais , Carbolinas/farmacologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Humanos , Camundongos , Mutação , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia
7.
ACS Omega ; 7(20): 17083-17097, 2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35647450

RESUMO

The anaplastic lymphoma kinase (ALK) is abnormally expressed and hyperactivated in a number of tumors and represents an ideal therapeutic target. Despite excellent clinical responses to ALK inhibition, drug resistance still represents an issue and novel compounds that overcome drug-resistant mutants are needed. We designed, synthesized, and evaluated a large series of azacarbazole inhibitors. Several lead compounds endowed with submicromolar potency were identified. Compound 149 showed selective inhibition of native and mutant drug-refractory ALK kinase in vitro as well as in a Ba/F3 model and in human ALK+ lymphoma cells. The three-dimensional (3D) structure of a 149:ALK-KD cocrystal is reported, showing extensive interaction through the hinge region and the catalytic lysine 1150.

8.
Int J Mol Sci ; 22(20)2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34681671

RESUMO

The infection of mammalian cells by enveloped viruses is triggered by the interaction of viral envelope glycoproteins with the glycosaminoglycan, heparan sulfate. By mimicking this carbohydrate, some anionic polysaccharides can block this interaction and inhibit viral entry and infection. As heparan sulfate carries both carboxyl and sulfate groups, this work focused on the derivatization of a (1→3)(1→6)-ß-D-glucan, botryosphaeran, with these negatively-charged groups in an attempt to improve its antiviral activity. Carboxyl and sulfonate groups were introduced by carboxymethylation and sulfonylation reactions, respectively. Three derivatives with the same degree of carboxymethylation (0.9) and different degrees of sulfonation (0.1; 0.2; 0.4) were obtained. All derivatives were chemically characterized and evaluated for their antiviral activity against herpes (HSV-1, strains KOS and AR) and dengue (DENV-2) viruses. Carboxymethylated botryosphaeran did not inhibit the viruses, while all sulfonated-carboxymethylated derivatives were able to inhibit HSV-1. DENV-2 was inhibited only by one of these derivatives with an intermediate degree of sulfonation (0.2), demonstrating that the dengue virus is more resistant to anionic ß-D-glucans than the Herpes simplex virus. By comparison with a previous study on the antiviral activity of sulfonated botryosphaerans, we conclude that the presence of carboxymethyl groups might have a detrimental effect on antiviral activity.


Assuntos
Antivirais/farmacologia , Vírus da Dengue/efeitos dos fármacos , Herpesviridae/efeitos dos fármacos , Ácidos Sulfônicos/química , beta-Glucanas/química , Animais , Antivirais/química , Sobrevivência Celular/efeitos dos fármacos , Chlorocebus aethiops , Vírus da Dengue/fisiologia , Glucanos/química , Glucanos/farmacologia , Herpesviridae/fisiologia , Metilação , Células Vero , Internalização do Vírus/efeitos dos fármacos , beta-Glucanas/farmacologia
9.
Bioorg Chem ; 109: 104739, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33626451

RESUMO

We report the rational design, synthesis, and in vitro preliminary evaluation of a new small library of non-peptide ligands of Gastrin Releasing Peptide Receptor (GRP-R), able to antagonize its natural ligand bombesin (BN) in the nanomolar range of concentration. GRP-R is a transmembrane G-protein coupled receptor promoting the stimulation of cancer cell proliferation. Being overexpressed on the surface of different human cancer cell lines, GRP-R is ideal for the selective delivery to tumor cells of both anticancer drug and diagnostic devices. What makes very challenging the design of non-peptide BN analogues is that the 3D structure of the GRP-R is not available, which is the case for many membrane-bound receptors. Thus, the design of GRP-R ligands has to be based on the structure of its natural ligands, BN and GRP. We recently mapped the BN binding epitope by NMR and here we exploited the same spectroscopy, combined with MD, to define BN conformation in proximity of biological membranes, where the interaction with GRP-R takes place. The gained structural information was used to identify a rigid C-galactosidic scaffold able to support pharmacophore groups mimicking the BN key residues' side chains in a suitable manner for binding to GRP-R. Our BN antagonists represent hit compounds for the rational design and synthesis of new ligands and modulators of GRP-R. The further optimization of the pharmacophore groups will allow to increase the biological activity. Due to their favorable chemical properties and stability, they could be employed for the active receptor-mediated targeting of GRP-R positive tumors.


Assuntos
Antineoplásicos/farmacologia , Bombesina/farmacologia , Desenho de Fármacos , Receptores da Bombesina/antagonistas & inibidores , Antineoplásicos/síntese química , Antineoplásicos/química , Bombesina/análogos & derivados , Bombesina/química , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Receptores da Bombesina/metabolismo , Relação Estrutura-Atividade , Células Tumorais Cultivadas
10.
Spectrochim Acta A Mol Biomol Spectrosc ; 249: 119255, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33338938

RESUMO

Surface-enhanced Raman spectroscopy (SERS) became a useful analytical technique with the development of appropriate metallic substrates. The need for SERS substrates that immobilize metallic nanoparticles prompted this work to search for an appropriate material. This work presents the preparation, characterization and application of a SERS substrate for crystal violet (CV) detection, as the probe molecule. The inner layer of the substrate is a thin film of the fungal ß-D-glucan, botryosphaeran, covered by a thin layer of silver nanoparticles (AgNPs). The nanoparticles were produced by laser ablation, a fast and clean method for their preparation, and the layers were assembled by casting. Scanning electron and atomic force microscopies, UV-VIS and Raman spectroscopy and X-ray diffraction allowed the characterization of the surface of the substrate. Analysis by Raman spectroscopy showed promising results for SERS amplification on the substrate. Detection of CV reached enhancement factors up to 106 orders of magnitude, compared to normal Raman spectra. Linearity was observed for analyses on the SERS substrate at concentration ranges of 0.005 to 1 µmol L-1. The assembly reached the detection of 12 pmol cm-2 of CV, which corresponds to 96 fg of the probe molecule contained in the area of the substrate effectively interacting with the laser. The substrate was more efficient than silver colloids to perform SERS.


Assuntos
Nanopartículas Metálicas , Análise Espectral Raman , Violeta Genciana , Polissacarídeos , Prata
11.
Int J Biol Macromol ; 138: 334-339, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31302130

RESUMO

Sulfated polysaccharides are known to display activity against enveloped viruses, such as herpes and dengue. The aim of this work was to assess the antiviral activity of botryosphaeran, a fungal exocellular (1 → 3)(1 → 6)-ß-d-glucan devoid of sulfate groups, and its chemically sulfonated derivatives, against herpes simplex virus (HSV), dengue virus (DENV) and poliovirus (PV). The natural parent polysaccharide inhibited acyclovir-sensitive HSV (HSV-KOS) infection in Vero cells (IC50 of 39.3 µg mL-1), while the IC50 against acyclovir-resistant HSV (HSV-AR) was 47.5 µg mL-1. Botryosphaeran was derivatized by sulfonylation with chlorosulfonic acid to prepare two sulfonated derivatives, S1 and S2, with degrees of substitution (DS) of 0.4 and 1.1, respectively. Antiviral evaluation of S1 and S2 gave the IC50 of 3.0 and 2.4 µg mL-1 against HSV-KOS, and 7.3 and 2.7 µg mL-1 against HSV-AR, respectively. This study demonstrated for the first time that native botryosphaeran inhibited HSV infection, albeit moderately, while its sulfonated derivatives developed high activity against viral infection. DENV inhibition was weak for botryosphaeran, but remarkably stronger for S1 and S2. All compounds were inactive against PV, as it lacked a viral envelope. The presence of sulfate groups and the DS were confirmed to be important features for antiviral activity.


Assuntos
Antivirais/química , Antivirais/farmacologia , Vírus da Dengue/efeitos dos fármacos , Glucanos/química , Glucanos/farmacologia , Simplexvirus/efeitos dos fármacos , Ácidos Sulfônicos/química , Animais , Chlorocebus aethiops , Poliovirus/efeitos dos fármacos , Células Vero
12.
Beilstein J Org Chem ; 13: 1222-1229, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28694868

RESUMO

Agarose was herein employed as starting material to produce primary, secondary and tertiary C-glycoside glycamines, including mono- and disaccharide structures. The semisynthetic approach utilized was generally based on polysaccharide-controlled hydrolysis followed by reductive amination. All reactions were conducted in aqueous media and without the need of hydroxyl group protection. We were able to identify optimal conditions for the reductive amination of agar hydrolysis products and to overcome the major difficulties related to this kind of reaction, also extending it to reducing anhydrosugars. The excess of ammonium acetate, methyl- or dimethylamine, and the use of a diluted basic (pH 11) reaction media were identified as important aspects to achieve improved yields, as well as to decrease the amount of byproducts commonly related to reductive amination of carbohydrates. This strategy allowed the transposition of the 3,6-anhydro-α-L-galactopyranose unit (naturally present in the agarose structure) to all glycamines synthesized, constituting an amino-substituted C-threofuranoside moiety, which is closely related to (+)-muscarine.

13.
Bioorg Med Chem Lett ; 27(2): 156-161, 2017 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-27956348

RESUMO

Sixteen porphyrins, including neutral, anionic and cationic meso-(aryl)porphyrins and meso-(1-methyl-4-pyridinium)porphyrins were herein evaluated in terms of their photosensitizing properties against HaCaT keratinocytes. After an initial screening, the cationic porphyrins were studied in more details, by both determining their log POW and performing PDT assays in lower porphyrin concentrations. Porphyrins presenting two or more adjacent positively charged groups, directly linked to the macrocycle meso positions, appeared to be the most effective photosensitizers. The present study also included the dicationic 5,10-diphenyl-15,20-di(1-methylpyridinium-4-yl)porphyrin (14b), which has previously shown promising results on a psoriasis-like in vivo model. Overall results indicated that the beneficial effect related to porphyrins on psoriasis can be related to the decreasing of keratinocyte viability. Furthermore, some of the cationic porphyrins studied appeared as candidates to be utilized as photosensitizers for psoriasis treatment.


Assuntos
Queratinócitos/efeitos dos fármacos , Fármacos Fotossensibilizantes/farmacologia , Porfirinas/farmacologia , Compostos de Piridínio/farmacologia , Linhagem Celular , Humanos , Queratinócitos/citologia , Luz , Fármacos Fotossensibilizantes/síntese química , Porfirinas/síntese química , Psoríase/tratamento farmacológico , Compostos de Piridínio/síntese química
14.
J Biomed Nanotechnol ; 13(1): 68-76, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29372993

RESUMO

The low rate of cure of adrenocortical carcinomas (ACC) in children and adults is related to germ line TP53 mutation, late diagnosis, incomplete surgical resection, and lack of an efficient adjunctive therapy. To provide a new approach for the improvement of ACC diagnosis and therapy, the present study aimed to explicitly target ACC cells using gold nanoparticle (AuNP) probes bound to specific antibodies. Immunohistochemistry of ACC and positive and negative control tissue micro-sections under light microscopy was used to test a purified polyclonal antibody raised against the 80­93, outer loop 1 position of the human melanocortin receptor 2 (hMC2R). Both this and a control commercial antibody were found to specifically target cells known to express hMC2R. These were bound to FITC-labeled AuNPs and tested via direct immunofluorescence using the H295R ACC cell line. Both probes recognized only cells expressing hMC2R and exhibited very low background. Further studies are required to ascertain the potential of AuNPs bound to ACC cells for tumor diagnostics via imaging analysis or as a delivery device for targeted therapy.


Assuntos
Neoplasias do Córtex Suprarrenal/diagnóstico por imagem , Neoplasias do Córtex Suprarrenal/tratamento farmacológico , Sistemas de Liberação de Medicamentos/métodos , Ouro/química , Nanopartículas Metálicas/química , Imagem Molecular/métodos , Neoplasias do Córtex Suprarrenal/metabolismo , Animais , Feminino , Humanos , Imuno-Histoquímica , Coelhos , Receptor Tipo 2 de Melanocortina/metabolismo , Nanomedicina Teranóstica
15.
Bioorg Med Chem ; 22(4): 1303-12, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24468632

RESUMO

Chromosomal translocations involving anaplastic lymphoma kinase (ALK) are the driving mutations for a range of cancers and ALK is thus considered an attractive therapeutic target. We synthesized a series of functionalized benzo[4,5]imidazo[1,2-c]pyrimidines and benzo[4,5]imidazo[1,2-a]pyrazines by an aza-Graebe-Ullman reaction, followed by palladium-catalyzed cross-coupling reactions. A sequential regioselective cross-coupling route is reported for the synthesis of unsymmetrically disubstituted benzo[4,5]imidazo[1,2-a]pyrazines. The inhibition of ALK was evaluated and compound 19 in particular showed good activity against both the wild type and crizotinib-resistant L1196M mutant in vitro and in ALK-transfected BaF3 cells.


Assuntos
Imidazóis/química , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/farmacologia , Pirazinas/química , Pirimidinas/química , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Quinase do Linfoma Anaplásico , Animais , Sítios de Ligação , Catálise , Domínio Catalítico , Linhagem Celular , Ativação Enzimática/efeitos dos fármacos , Humanos , Imidazóis/síntese química , Imidazóis/metabolismo , Camundongos , Simulação de Acoplamento Molecular , Paládio , Ligação Proteica , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/metabolismo , Pirazinas/síntese química , Pirazinas/metabolismo , Pirimidinas/síntese química , Pirimidinas/metabolismo , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/metabolismo , Estereoisomerismo
16.
Nat Prod Rep ; 28(3): 630-48, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21120227

RESUMO

Cancer is one of the major causes of death worldwide. As a consequence, many different therapeutic approaches, including the use of glycosides as anticancer agents, have been developed. Various glycosylated natural products exhibit high activity against a variety of microbes and human tumors. In this review we classify glycosides according to the nature of their aglycone (non-saccharidic) part. Among them, we describe anthracyclines, aureolic acids, enediyne antibiotics, macrolide and glycopeptides presenting different strengths and mechanisms of action against human cancers. In some cases, the glycosidic residue is crucial for their activity, such as in anthracycline, aureolic acid and enediyne antibiotics; in other cases, Nature has exploited glycosylation to improve solubility or pharmacokinetic properties, as in the glycopeptides. In this review we focus our attention on natural glycoconjugates with anticancer properties. The structure of several of the carbohydrate moieties found in these conjugates and their role are described. The structure­activity relationship of some of these compounds, together with the structural features of their interaction with the biological targets, are also reported. Taken together, all this information is useful for the design of new potential anti-tumor drugs.


Assuntos
Antineoplásicos , Produtos Biológicos , Glicoconjugados , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Produtos Biológicos/química , Produtos Biológicos/isolamento & purificação , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Glicoconjugados/química , Glicoconjugados/isolamento & purificação , Glicoconjugados/farmacologia , Glicoconjugados/uso terapêutico , Estrutura Molecular , Relação Estrutura-Atividade
17.
Future Med Chem ; 2(4): 587-99, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21426009

RESUMO

Several glycoprocessing enzymes and glycoreceptors have been recognized as important targets for therapeutic intervention. This concept has inspired the development of important classes of therapeutics, such as anti-influenza drugs inhibiting influenza virus neuraminidase, anti-inflammatory drugs targeting lectin-sialyl-Lewis X interaction and glycosidase inhibitors against HIV, Gaucher's disease, hepatitis and cancer. These therapeutics are mainly carbohydrate mimics in which proper modifications permit stronger interactions with the target protein, higher stability, better pharmacokinetic properties and easier synthesis. Furthermore, the conformational rigidity and polyfunctionality of carbohydrates stimulate their use as scaffolds for the generation of libraries by combinatorial decoration with different pharmacophores. This mini-review will present examples of how to exploit carbohydrates mimics and scaffolds in drug research.


Assuntos
Carboidratos/química , Carboidratos/uso terapêutico , Química Farmacêutica/métodos , Técnicas de Química Combinatória , Desenho de Fármacos , Mimetismo Molecular , Configuração de Carboidratos , Sequência de Carboidratos , Humanos , Dados de Sequência Molecular , Estrutura Molecular , Nitrogênio/química , Oxigênio/química
18.
J Biotechnol ; 144(3): 234-41, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19539677

RESUMO

Small molecules altering protein functions as inhibitors, agonists or antagonists, find application in systems biology enabling an analysis of the in vivo consequences of these alterations. In this context carbohydrates are ideal tools, not only because they are involved in a variety of recognition phenomena of biological relevance, but also because they are ideal scaffolds to generate libraries of bioactive compounds. Examples of design, synthesis and biological assays of different carbohydrate based inhibitors or protein ligands are reported. Exploiting NMR methods, the binding between a small molecules (inhibitor or ligand) and a protein can be detected, the affinity measured, and the interaction topology defined. This set of information is useful not only to clarify the mechanism of protein-ligand interaction, but also to improve the design of new inhibitors/ligands. The multifunctionality and the conformational rigidity of carbohydrates make this class of compounds the ideal scaffolds to generate libraries exploiting the combinatorial approach. An example of solid phase combinatorial synthesis of a library of 37 compounds is reported.


Assuntos
Carboidratos/química , Técnicas de Química Combinatória/métodos , Técnicas Genéticas , Inibidores Enzimáticos/química , Ligantes , Espectroscopia de Ressonância Magnética
19.
Carbohydr Res ; 341(5): 677-82, 2006 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-16442514

RESUMO

Digeneaside (alpha-D-mannopyranosyl-(1-->2)-D-glycerate) was extracted from the red algae, Bostrychia binderii, and purified by adsorption and gel-filtration chromatography. HPLC and ESI-MS techniques were used to follow purification steps and characterize digeneaside. NMR spectroscopy experiments (1D 1H, 13C, DEPT and 2D HMQC, COSY and TOCSY) were used to fully assign the 1H and 13C spectra.


Assuntos
Ácido Láctico/análogos & derivados , Manosídeos/química , Alga Marinha/química , Sequência de Carboidratos , Isótopos de Carbono , Cromatografia Líquida de Alta Pressão , Ácidos Glicéricos/química , Ácido Láctico/química , Manose/química , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Alga Marinha/metabolismo , Espectrometria de Massas por Ionização por Electrospray
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...